Does Bandwidth Increase Speed? They are not the same thing!

 

It’s terribly confusing that Bandwidth and Speed terms are used interchangeably as they are not the same thing but what it really comes down to is this question: Does bandwidth increase speed? Let’s explore what bandwidth is to see if we can answer this question.

Bandwidth is the number of “lanes” available to your computer. It is typically measured in Megabits/second of Mbps or Gigabits/second or Gbps. Do the number of lanes affect the speed of your car? Typically no, unless it’s rush hour.

What matters is how fast you can drive right? That’s “latency” in the internet/networking world. It is dependent on a lot of different factors, including but not limited to, the speed of your computer, the speed of your network card, the speed/how busy your local modem/router is, the speed/how busy your local internet provider’s infrastructure is and then all these factors on the other end of the connection as well. The “bottleneck” in the equation defines your latency at that particular time to whatever particular service.

So yes, bandwidth can increase speed but only if there is congestion. A sane person usually doesn’t seek out congestion so this is really only a problem in certain rural situations where congestion can’t be avoided. So, in a normal situation bandwidth will not increase speed.

So how do your measure your internet connection? Well, take those “bandwidth” sites with a grain of salt – they are best for measuring the bandwidth received to match up with the internet plan your paying for. The best measurement test I’ve found to determine “quality of experience” is the Cisco Webex Network test: https://mediatest.webex.com.

It measures a bunch of different things for a video call, which is the most demanding application for most people. If you get all green, then you’re in good shape. It means you could run all applications from that location without issues (as long as the opposite party doesn’t have a bad connection of course).

Check out my own article on how to improve your internet: https://textor.ca/2015/03/forget-a-bandwidth-upgrade-try-these-4-things-to-make-the-home-internet-experience-better/ 

Others have written on this subject – try here for another spin on this subject: https://accucode.com/bandwidth-vs-speed-which-is-more-important-2/

Notes:

Any speed test should be completed by a cabled computer. That is, not using WiFi. Also, typically, no other devices should be used, so only the testing computer is using the Internet connection. That is because all devices are aggregated to go out the Internet connection and will spoil the results. Even browsers may affect the result so try different browsers; more about that here

M-Lab, the platform/data behind CIRA and Google speed tests, has a visualization tool for average speeds located here (if it doesn’t work, try a different browser): https://www.measurementlab.net/visualizations/

Fast.com is Netflix’s internet speed test. You can access it by clicking here. Although it has the limitations I’ve previously identified (as with other speed tests), Netflix explains how they designed their speed test which may make it more accurate than other speed tests:
https://netflixtechblog.com/building-fast-com-4857fe0f8adb 

An ISP technician is the best person to be doing a proper line speed test. This will remove any complexities with the customer equipment and prove what the service could be capable of; irrespective of plan limits. Here’s what a test looks like. The tester is on the line and technician uses their phone to interact with it:

“Canadians paid more than $1.2 billion in wireless data overage fees last year”

https://business.financialpost.com/telecom/canadians-paid-more-than-1-2-billion-in-wireless-data-overage-fees-last-year

What can you do about it? Android users can install a no-root firewall called “NetGuard”. I’m not sure if Apple users can do anything. I did a quick search and nothing came up.

If you’re not too technical, use my NetGuard import file (link below) to auto-configure the app for you. I had to troubleshoot some google system apps to make it run seamlessly. The app works basically by stopping anything from using your data plan unless you say so. You can set apps up to not use data unless you are actually using them as well (screen is on and actively interacting with it). It’s pretty slick. We use about 200MB a month just by using this app. We still get maps/GPS, email, etc. Things we try to avoid doing while on data is using a web browser and video. That doesn’t mean we don’t watch videos. We just indicate that the video is downloaded for offline viewing only while on Wifi (you can do this with Netflix and Plex).

NetGuard link: https://www.netguard.me/
Link to import file: Right click this link and select “Save link as…” netguard_20181128 – If it says “zip can’t be downloaded securely”, click the “arrow up” and select “Keep”. Download to a desktop/laptop and unzip this file with password “1234”. Due to wordpress security it doesn’t allow .xml files so using password zip to get around this. Then transfer this file to your phone (e.g. maybe by emailing or certainly via USB transfer).

 

Published in Reader’s Digest “11 Hidden Reasons Your Internet Is So Slow”

Yes, the Reader’s Digest. Access their article here:

11 Hidden Reasons Your Internet Is So Slow (Oct 1, 2018)

They quoted a popular post I wrote in 2015:

Forget a bandwidth upgrade! Try these 4 things to make the home internet experience better

Note: Reader’s Digest is owned by “Trusted Media Brands, Inc.” and the article may also be displayed on other sister sites such as Family Handyman: https://www.familyhandyman.com/smart-homeowner/diy-home-improvement/hidden-reasons-your-internet-is-so-slow/

How North American Energy Can Compete – Enablement of a Digital Oilfield with a “Connected Field”

Did you know that accountants were hesitant to adopt spreadsheet programs like excel? Or that it took us decades to fully adopt trains, automobiles and computers? Do you think these things changed our lives? Of course! How could we conceive where we are today without them? But it took a while for them to gain “steam” (pun intended).

The situation with the Digital Oilfield in North America follows these familiar lines. It is a transformation that I cannot adequately explain since I only know how to build the enabling technology. How it’s going to be used is up to each person acting individually and resulting in a collective connected effect. Sure, I can give some examples or find people who have done this or that. But that’s the tip of the iceberg. The “killer example” is going to be different for every team in an energy company.

The enabling technology for the Digital Oilfield is called a “Connected Field”. It takes the Oilfield improvement areas listed below and binds them together. It’s the enablement of seamless intercommunication and coordination that truly leverages a Digital Oilfield. Without it, it’s an Oilfield that uses new Oilfield technology – not the exciting “Digital Oilfield” that truly propels the energy business to the next level.

There are so many ways to get a Connected Field wrong for a Digital Oilfield. Even with the right telecom vendors, it’s so easy to say “we don’t need QoS (Quality of Service)” – simply because the decision maker doesn’t know what it is. The fallacy is that there is a belief we already have a Digital Oilfield. There are already real world examples of a true Digital Oilfield using a Connected Field. And they are all in the Middle East; lowering their costs and increasing their supply. I cover a real world example later, so it will be easy to see the difference.

But let’s go back to the beginning. What is a “Digital Oilfield”?  The concept was first presented in the seminal study: “The Digital Oilfield of the Future: Enabling Next Generation Reservoir Performance”, IHS Cambridge Energy Research Associates, Inc., 2003.

A Digital Oilfield makes the following improvements to the Oil & Gas business – and a Connected Field enables most of them; that is, you need a connected field to truly leverage the benefit to the full extent.

So what is a “connected field”? It is a data communications system that has these characteristics:

  • Completely and seamlessly covers the area of interest (like cellular data might cover all of the downtown of a city). This allows users to just turn on a device (sensor, video, etc.) reducing or eliminating the need to involve IT to justify a business case to obtain capital to expand the network. It just works. Technicians are not required to tune antennas at the user level. A rig can just move itself and still have full connectivity to all its services while it is moving and when it reaches its destination.
  • It is a committed That is, it is not a “best effort” network, shared with other companies and people in the area (like cellular data).
  • It allows full control – that is, it has quality of service (QoS) capabilities to prioritize business critical applications or applications requiring better service to function correctly (voice, video).

Let’s examine what is not a connected field:

  • Cellular data from any major telco. The reason why it is not is that it has no QoS and is best effort (no committed bandwidth) and may not cover the entire field without boosters (which are technically illegal according to the Telecommunications Act).
  • MPLS networks – in themselves, they would help if the purchaser buys QoS. If the cost of buying the right networks with QoS was used to price the rent option, it is likely that the system could be built from scratch less expensively. That is, a Digital Oilfield should consider the “rent vs buy” options like any procurement decision.
  • Satellite – the price per Mbps with QoS and dedicated bandwidth is horrendously expensive. Unless the company (including all teams and phases that work in the area) only expects to operate in the area for 6 months or less, it’s frequently the case that it is cheaper to build.
  • SCADA (legacy 450 & 900Mhz) – really this is only for “tin can on a string” SCADA data – that is monitoring / telemetry. There are now new SCADA radios that can supply QoS and bandwidth rates at 18Mbps or above but most Oil & Gas companies, especially in North America are not using them. Most of the SCADA radios in use today use technology that was developed during World War II and they have not been updated. We’re talking punch card era technology.

And of course, I hear all the skeptics. So what does a Digital Oilfield do  in practice? Here’s an example:

Petroleum Development Oman (PDO)

  • Connected field coverage: 45,000 sq. km (17,000 sq. miles)
  • Increased a mature (brownfield) oilfield’s production by 100K barrels/day. At $90/barrel this is $3.2 Billion/year in additional revenue within one year. (Ok, yes, price of oil… but this was done in 2012 – even at $30 that’s $1 Billion)
  • Reduced drilling & completion days to online from 39 days to 14 days ($1M per drill saved). Including completions, saved $5M per well.
  • 10 month payback.

What does the Connected Field network look like for PDO?

As of the end of 2013, Petroleum Development Oman field has:

  • 6600 broadband connection points
  • 52 base stations
  • 13 Gbps total capacity, the equivalent of 500 connected homes or the bandwidth provided to a 4000 person office building
  • 130,000 end devices

Compare this to a field of that size in North America; there are maybe 10 cellular base stations covering the entire thing. Everything overloaded to the point that it does not work that well (e.g. “worse than dialup” is what I frequently hear).

Together the Connected Field collects 36 times more data enabling more accurate and improved decisions. It delivers 4 Mbps anywhere within the field of coverage (compared to less than 300kbps in some fields available today). You can drive around in a truck all day long and everything just works.

No messing with devices, changing networks, etc. Need to talk to the engineer in head office and start a video chat about a valve to show him/her the valve? Done! No problems. Want to implement an intelligent video system to monitor the flare stack, look for pipeline leaks, identify personnel not wearing PPE, etc.? Want a “mobile worker”? (Please do not confuse it with a “mobile OS” which is simply an operating system built to enable mobile workers that have a network.) With a Connected Field, you just do it! No need to price in a brand new network to enable the business case.

The cost of all this? Less than 1% of the total injected capital into a greenfield area. And if a true connected field is implemented that is multi-use and multi-team capable, the expenditure is less than what they spend today.

Despite the impressive track record how many Digital Oilfields are there in North America? None. Some are close with partial implementations but it’s localised and not well championed at the executive and board levels. How many in the Middle East? Quite a few. Middle East operations have the direct support of the board of directors/families and executives. Would this situation have any bearing on the current supply / demand and geopolitical climate? Hmm….

Do we need Fiber Optic Cable? Do we need gigabit broadband?

Do we need fiber optic cable now? No. This question deflects from the true purpose of this infrastructure upgrade. A plant cannot grow without first planting the seed. So let me explain why the world needs fiber and gigabit.

The main issue is about an end-of-life asset (copper) versus a 100-year or more asset (single mode fiber, SMF). There is no theoretical speed limit for SMF (at least not yet). Therefore, once installed, there will not be a need to dig it up or do anything special other than replace the fiber transceivers on each end. Copper, on the other hand, is at the end of its useful life. Small incremental improvements are being made but we can see the end of copper in our lifetime. New cable installations are now almost exclusively SMF.

Do we need gigabit broadband?

Here’s the bandwidth side; the side everyone seems to focus on. Don’t think of technology as it is known today. And remember that when companies put fiber in the ground, they are thinking very long term. First off, think video. Don’t think about anything else. None of it generates traffic like video does. Video killed the internet star. (thanks Netflix, thanks YouTube)

Teleprescence

Here’s the best example of the future. Think “telepresence”. Telepresence is immersive video calls – not the un-immersive video calls we’re all used to now. You actually feel like you are there with the person. I’ve personally experienced telepresence. And since then I experience intense disappointment at launching typical internet video. I’m spoiled now.  The question is, will telepresence become inexpensive enough to be used in everyday contexts? Does the earth revolve around the sun?

Think of what telepresence might mean for medicine (“house calls”) or business meetings (way less airline travel) or the environment (with so many less flights!).

What does telepresence mean in terms of bandwidth? Telepresence is 20mbps per session for HD (1080p). Ultra HD (4K) is something like 6x that requirement or 120mbps. Compare that to today’s video streams for Netflix which is 2Mbps HD & 12Mbps for UltraHD (4K).

Click here for more on telepresence.

Household Size

Now think about multiple people in a household launching simultaneous telepresence sessions. The gigabit threshold is now being pushed! Now think about aggregate “highway” for just the block you live in. How much will multiple households push? LOTS!  How much will the city generate? (expletive amount!)  How much will the country generate? (GAH!) How much will the world generate!? (Ahhhhh!!!!)

Do We Need Fiber Optic Cable in the Context of the Aggregate?

Should we start preparing for this now? Or wait until this happens and then wait another 5-10 years while every road and sidewalk to be dug up at the same time? And complain about it the whole time? (how we can’t move with so much construction)

I know what I prefer. I prefer telecom companies to start being proactive right now. And it would be great if my house has access to fiber. Even if I don’t need it right now.

And let’s put the Internet in context. The Internet and bandwidth to that Internet is the “railroad” of our era. Our very way of life now depends on it. The UN has recognized that democracy depends on Internet speed and has started a commission on broadband. Every single first world nation and many hundreds of nations have federal funding to build broadband infrastructure. The technology that rides on top the internet has the ability to help catapult so many game changers that many unsolvable world problems might become solvable.

And all this technology rides on a nation’s, a household’s ability to access it (broadband).

There, does that put Gigabit and fiber in context? So do we need fiber optic cable? Yes.

About the Author

An avid writer, Trevor Textor has been quoted by Reader’s Digest, NBC News, Reviews.com and MarketWatch.com among others. Over the course of 20 years Trevor has designed and built many small rural Internet builds across the globe. “It’s slower than dial-up” is something he knows personally (move mouse, wait 10 seconds, screen re-draw, try again) and has since used his passion to look for ways to help build better Internet. How Trevor pays his bills is as a freelancer providing a “swiss army skillset” and a proven ability to successfully assist many small, medium and large businesses in most areas of their business. Please consider clicking here to ask Trevor if he can help.

The End of Emergency Broadcasts – Now a Pull, Not a Push

One would think an emergency broadcast makes sense for everyone. What I noticed today was that my shortwave weather radio has a weekly test so you know you’re getting broadcasts. Then I noticed that I receive emergency alerts via twitter & email; neither of which have test messages. Presumably because we are all so afraid of “spam”?  Never mind that in the modern age, you can use filters to put the test messages in a folder you don’t see unless you want to confirm your getting emergency messages.

I think I’m on to something profound here but not exactly sure what it is… Hopefully twitter and email work in the Zombie Apocalypse.

Who says satellite is the only option for offshore?

Tampnet owns the largest offshore 4G network (which is its deployment in the UK’s North Sea – a significant Oil & Gas area similar to the Gulf of Mexico).

Tampnet just acquired Broadpoint (July 21, 2015) who owned 50 2G base stations in the GoM – and has plans to upgrade them to 4G. Click here to learn more.

North Sea Coverage map:
http://www.tampnet.com/north-sea/

GoM Coverage map:
http://www.tampnet.com/gulf-of-mexico/